Model Theory

Sheet 0

Not to be handed in

This sheet will be discussed during the first exercise class.

Exercise 1.

a) Let \mathcal{L} be a language and $\varphi[x_1,\ldots,x_n]$ be an \mathcal{L} -formula of the form

$$\varphi[x_1,\ldots,x_n] = \exists y_1\ldots\exists y_m\psi[x_1,\ldots,x_n,y_1,\ldots,y_m],$$

where ψ is a quantifier-free \mathcal{L} -formula. Given a structure \mathcal{B} and elements a_1, \ldots, a_n from a substructure \mathcal{A} of \mathcal{B} , show that

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n].$$

b) Does the converse hold?

Exercise 2.

Let \mathcal{L} be a language containing a unary predicate P_n for each n in \mathbb{N} . Consider an \mathcal{L} -theory T and an \mathcal{L} -formula $\varphi[x]$ such that in every model \mathcal{A} of T every element a satisfying φ lies in one of the predicates $P_n^{\mathcal{A}}$. Show that there exists an N in \mathbb{N} such that

$$T \models \forall x \left(\varphi[x] \to \bigvee_{n=0}^{N} P_n(x) \right).$$

Hint: THE theorem!

Exercise 3.

Given a (non-empty) set I, a filter \mathcal{F} on I is a non-empty subset of the power set $\mathcal{P}(I)$ with the following properties:

- 1. $\emptyset \notin \mathcal{F}$ and $I \in \mathcal{F}$.
- 2. For all X and Y from \mathcal{F} holds $X \cap Y$ in \mathcal{F} .
- 3. If X is in \mathcal{F} and $X \subset Y$, then Y is also in \mathcal{F} .
- a) Show that every intersection of filters is again a filter. Does the same hold for the union of filters?

A non-empty subset $\mathcal{B} \subseteq \mathcal{P}(I)$ is a *filter basis* if every finite intersection of elements from \mathcal{B} is non-empty.

b) Show that ever filter basis \mathcal{B} determines a filter which is generated by \mathcal{B} .

If $\mathcal{B} = \{X\}$ for a set $X \subset I$, then the filter generated by X is called *principal filter*. An *ultrafilter* is a maximal filter (with respect to \subset).

(Please turn the page!)

- c) Show that every filter is contained in an ultrafilter. Furthermore, show that a filter \mathcal{F} is an ultrafilter if and only if it satisfies the following additional property:
 - 4. If $X \cup Y$ is in \mathcal{F} , then X is in \mathcal{F} or Y is in \mathcal{F} .
- d) If a principal ultrafilter \mathcal{U} is generated by a subset $X \subset I$, what is the size of X? For infinite I, let $\mathcal{F}(I)$ denote the collection of all cofinite subsets of I, that is,,

$$\mathcal{F}(I) = \{X \subset I : I \setminus X \text{ is finite}\}.$$

Show that $\mathcal{F}(I)$ is a filter. A ultrafilter \mathcal{U} is non-principal if and only if \mathcal{U} contains the filter $\mathcal{F}(I)$.

- e) If the set I has cardinality \aleph_0 , show that an ultrafilter \mathcal{U} is closed under countable intersections if and only if \mathcal{U} is a principal ultrafilter.
- f) Given a filter \mathcal{F} on I and a family $(X_i)_{i\in I}$ of (non-empty) sets, define the following relation on $\prod_{i\in I} X_i$:

$$(a_i)_{i \in I} \sim_{\mathcal{F}} (b_i)_{i \in I} \iff \{i \in I : a_i = b_i\} \in \mathcal{F}.$$

Show that $\sim_{\mathcal{F}}$ is an equivalence relation.